

High-fidelity Modelling of Thermal Stress for Additive Manufacturing by Linking Thermal-fluid and Mechanical Models

Fan CHEN

4th year PHD student

Supervisor: Prof. Wentao YAN

Email: fanchen@u.nus.edu

Contents

- Background
- High-fidelity multi-physics modelling
- Results and discussion

Background

VIRTUAL Solid Freeform Fabrication SYMPOSIUM Natio

Thermal Stress

- > The part distortion;
- ➤ Loss of geometric tolerance;
- Delamination of layers during depositing;
- > Deterioration of the fatigue performance;
- > Fracture resistance.

Prediction

Assumptions & Analytical calculations;

Over-simplified Thermal-mechanical simulations.

$$\sigma_{maxCorr} = \frac{100\sigma_{maxASTM}}{m\left(\frac{\sigma_{maxASTM}}{\sigma_y} - 0.5^2\right) + 100}$$
 (Schajer, g. S.)

$$\sigma_a = c*(\mathrm{HV}+120)x(\sqrt{area})^{-\frac{1}{6}}$$
 (Y. Murakami)

$$\sigma_a = \frac{\Delta K_{\text{th}}}{F} * (\pi a)^{-\frac{1}{2}}$$
. (A. Spagnoli)

• Li, C., et al. "Residual stress in metal additive manufacturing." Procedia Cirp 71 (2018): 348-353.

Background Macro-scale (Part scale) modelling

Part distortion prediction & stress concentration

Background Meso-scale (Powder scale) modelling

Thermal-fluid flow simulation

- Voids
- Surface roughness
- Cracks
- Grain growth
- Dislocation

Thermo-mechanical analysis Diffiplification ses Assistant ptions: k morphology & fluid flow

Thermo-mechanical analysis

High-fidelity multi-physics modelling Framework

VIRTUAL Solid
Freeform Fabrication

Governing equations

Meshing difference

CFD

$$egin{aligned} rac{\partial f}{\partial x} &= rac{1}{Vol} \oint f ar{n_x} \cdot dar{A} = \sum_{i,j}^{CV} f_{[i,j]} ar{n}_{[i,j],x} \ rac{\partial f}{\partial y} &= rac{1}{Vol} \oint f ar{n_y} \cdot dar{A} = \sum_{i,j}^{CV} f_{[i,j]} ar{n}_{[i,j],y} \ f_{[i,j],x} &= rac{1}{2} (f_{(i,j)} + f_{(i+1,j)}) \ f_{[i,j],y} &= rac{1}{2} (f_{(i,j)} + f_{(i,j+1)}) \ extbf{FEM} \end{aligned}$$

$$f_{[i,j],x} = Function(f_{(m,n)})$$

$$f_{[i,j],y} = Function(f_{(m,n)})$$

High-fidelity multi-physics modelling

Spatial interpolation:

$$T(x,y,z) = \sum_{i=1}^{8} N_i(\xi, \eta, \varsigma) T_i$$

Temporal interpolation:

FEM
$$\frac{T'(t_1')}{t_1'}$$
 $\frac{T'(t_2')}{t_2'}$ CFD $\frac{t_1}{t_1}$ $\frac{t_2}{t_2}$ $\frac{T(t_1)}{t_1}$ $\frac{T(t_1)}{t_1'}$ $\frac{T(t_2)}{t_2}$ $\frac{T(t_1)}{t_1}$ $\frac{T(t_2)}{t_1}$

$$T'(t_1') = T(t_1) + \frac{T(t_2) - T(t_1)}{t_2 - t_1} (t_1' - t_1)$$

High-fidelity multi-physics modelling Quiet element method

- No activation or deactivation;
- Field variables for different state;
- High flexibility;
- Easy implementation.

Material states	Young's modulus(Pa)	Poisson ratio	Thermal expansion coefficient $(1/K)$
Solid	$1.32{ imes}10^{11}$	0.31	9.2×10^{-6}
Liquid	1×10^4	0.001	9.2×10^{-6}
Air	1×10^4	0.001	0

Quiet element

Results and discussion Temperature mapping result

Results and discussion Temperature distribution & Track morphology

Results and discussion X-X stress component

Results and discussion Comparison

Conclusion

*Geometrical features

*Peak temperature *Molten pool size *Stress distribution

Results and discussion

Comparison

➤ Magnitude

> Trend

Freeform Fabrication

VIRTUAL Solid

Single track experiments

The experiments are conducted by Vrancken et al.[1] (reuse under CC-BY 4.0 license)

X-stress (MPa) (by CFD-FEM simulation, P=60 W, v=500 mm/s)

Single track experiments

Snapshots in 4 stages

 t_1 ' -- the heat is ready on the left side; t_2 ' -- the track is being fabricated; t_3 ' -- the track has been formed but the observed region has not cooled

 t_4 ' -- the material has almost cooled down.

down;

Single track experiments

Snapshots in 4 stages

Other applications

Direct energy deposition temperature of fluid

Thompson S M, Bian L, Shamsaei N, et al. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics[J]. Additive Manufacturing, 2015, 8: 36-62.

Other applications

Origin of high-density dislocations in additively manufactured metals

Major finding on the origin:

- × Previously proposed mechanisms (cell solidification or nanoparticle blockage).
- √ Repeated compression-tension cycles of thermal stress

Thank you for listening!

Q&A

Fan CHEN

Supervisor: Prof. Wentao YAN

Email: fanchen@u.nus.edu

